Emilio Doni

Elementi di elettricità
e di magnetismo

spiegati con le leggi classiche
ed esposti per l’uso dei licei

Edizioni ETS
Emilio Doni
Dipartimento di Fisica dell’Università di Pisa,
largo B. Pontecorvo 3, 56127 Pisa
e
NEST, Istituto di Nanoscienze – CNR e Scuola Normale Superiore,
piazza San Silvestro 12, 56127 Pisa

© Copyright 2013
EMILIO DONI

ISBN 978-884673675-8
Indice

Per cominciare xvii

Contenuti xviii

Criteri xx

Riconoscimenti xxii

Campi: elettricità (senza dipendenza dal tempo) 1

1 Prologo 3

2 Strumenti 5

2.1 Cos’è un campo 5

2.2 Quale campo per i fenomeni elettrici 6

2.3 La carica e le sorgenti di un campo 7

2.4 Il campo elettrico 8

2.5 Una analogia: il campo gravitazionale 9

3 Operazioni 11

3.1 Grandezze fisiche e matematica per descriverle 11

3.2 Curve e superfici nello spazio 12

3.3 Operazioni possibili per un campo scalare 13

3.4 Ancora su curve e superfici nello spazio 15

3.5 Operazioni per i campi vettoriali 16

3.5.1 Operazioni per un campo vettoriale su una curva 17

3.5.2 Operazioni per un campo vettoriale su una superficie 18

3.5.3 Sono state definite operazioni lineari 20

4 Il flusso del campo elettrico 23

4.1 Questioni di metodo 23

4.1.1 Un esempio 24

4.2 La legge del flusso del campo elettrico 25

4.2.1 La permittività del vuoto 26
5 Primo intermezzo sulle unità di misura

6 Distribuzioni di carica e campo elettrico
 6.1 Campo elettrico dovuto a carica puntiforme
 6.1.1 Significato dei criteri di invarianza
 6.1.2 Criteri di invarianza nel caso di carica puntiforme
 6.1.3 Soluzione dell’equazione del flusso del campo elettrico
 6.2 Una osservazione sulle dimensioni dello spazio
 6.3 L’equazione del flusso del campo elettrico è lineare
 6.4 Campo elettrico di un filo rettilineo carico
 6.4.1 Criteri di invarianza
 6.4.2 Conseguenze dei criteri di invarianza
 6.4.3 Soluzione dell’equazione del flusso del campo elettrico
 6.5 Campo elettrico di una superficie piana carica
 6.5.1 Criteri di invarianza per una superficie piana carica e conseguenze
 6.5.2 Soluzione dell’equazione del flusso del campo elettrico
 6.6 Campo elettrico di una sfera uniformemente carica
 6.6.1 Un problema di meccanica
 6.6.2 Campo elettrico di una superficie sferica uniformemente carica
 6.7 Campo elettrico di altre distribuzioni di carica
 6.7.1 Il campo elettrico di un condensatore

7 La circuitazione del campo elettrico
 7.1 La legge della circuitazione del campo elettrico
 7.2 Il potenziale del campo elettrico
 7.2.1 Definizione del potenziale del campo elettrico
 7.2.2 Alcune proprietà del potenziale del campo elettrico
 7.3 Dal potenziale del campo elettrico alla meccanica
 7.3.1 Lavoro della forza prodotta dal campo elettrico
 7.3.2 Affermazioni equivalenti
 7.3.3 Energia di un portatore di carica in campo elettrico
 7.4 Potenziale e movimenti di un corpo carico
 7.4.1 Regioni dello spazio equipotenziali

8 Il potenziale di alcuni campi elettrici
 8.1 Il potenziale di un campo elettrico uniforme
 8.1.1 Il potenziale di un condensatore
 8.2 Potenziale del campo elettrico di carica puntiforme
 8.2.1 Calcolo di una somma un po’ complicata
 8.3 Potenziale del campo elettrico di un filo carico
 8.3.1 Calcolo di un’altra somma un po’ complicata
 8.4 Potenziale del campo elettrico di una sfera carica
 8.4.1 Calcolo di ancora un’altra somma un po’ complicata
 8.4.2 È possibile che il potenziale faccia un salto?
8.5 Ricavare il potenziale è un’operazione lineare 89
 8.5.1 Una applicazione 90
8.6 Ancora su problemi di meccanica 94

9 Dal potenziale al campo elettrico 99
 9.1 Quando il potenziale è uniforme 101
 9.2 Qual è la direzione del campo elettrico? 102
 9.3 Dove il potenziale ha un massimo o un minimo 103
 9.3.1 All’interno di una superficie chiusa equipotenziale 104

10 Grande, piccolo 107
 10.1 Differenti punti di vista 108
 10.2 Collegare i punti di vista 109
 10.3 Energia e dissipazione 111
 10.4 Materiali conduttori e materiali isolanti 113

11 Conduttori 115
 11.1 All’interno di un conduttore 115
 11.1.1 Cariche libere all’interno di un conduttore? 116
 11.1.2 E quando il conduttore non è all’equilibrio? 116
 11.2 Superficie di un conduttore 117
 11.2.1 Campo elettrico di una superficie conduttrice piana carica 119

12 Correnti 123
 12.1 Densità di corrente 124
 12.1.1 Il flusso della densità di corrente 126
 12.1.2 Flusso della densità di corrente su una superficie chiusa 127
 12.2 La carica si conserva 129
 12.3 Densità di corrente stazionaria 130
 12.3.1 Una proprietà dei campi vettoriali con flusso nullo 130
 12.4 Corrente stazionaria 132
 12.4.1 E in condizioni non stazionarie? 134
 12.4.2 Conduttori che si dividono in più rami 136
 12.5 Corrente e campo elettrico 138
 12.6 Cos’è la conduttività? 139
 12.6.1 Cosa capita all’interno di un conduttore 139
 12.6.2 Conduttività e quantità medie 141
 12.6.3 Cosa ostacola il moto degli elettroni liberi? 142

13 Circuiti 147
 13.1 Pile, batterie, accumulatori 147
 13.2 Un circuito elementare 148
 13.2.1 Campo elettrico dentro una barretta conduttrice 148
 13.2.2 Resistenza di una barretta di conduttore 150
13.2.3	La legge di Ohm	151
13.2.4	Resistenza di un conduttore di forma qualunque	152
13.3	Circuitti resistivi in corrente continua	158
13.3.1	Direzioni in un conduttore	161
13.4	Potenza dissipata in un conduttore	162
13.4.1	Qualche esempio	164

14	Polarizzazione	167
14.1	Mezzi polari, mezzi non polari	167
14.1.1	Mezzi, polari o non polari, in campo elettrico	169
14.2	Dipolo elettrico	170
14.2.1	Momento di dipolo elettrico	171
14.2.2	Campo elettrico prodotto da un dipolo elettrico	171
14.2.3	E il potenziale?	178
14.3	Un dipolo in campo elettrico	179
14.3.1	Energia potenziale di un dipolo in campo elettrico	179
14.4	Campo di polarizzazione	180
14.4.1	Media sulla polarizzazione microscopica	181

15	Equazioni del campo nei mezzi polarizzabili	183
15.1	Come trattare la carica microscopica	184
15.1.1	Carica microscopica e flusso del campo di polarizzazione	185
15.2	Il campo di spostamento elettrico	187
15.2.1	L'equazione del flusso del campo di spostamento elettrico	188
15.3	Collegamento tra il campo elettrico e il campo di spostamento elettrico	188
15.3.1	La suscettività elettrica	189
15.3.2	La costante dielettrica	190
15.4	Come risolvere l’equazione del flusso del campo di spostamento elettrico	191
15.4.1	Carica puntiforme all’interno di un mezzo omogeneo	192
15.4.2	Insidie e precauzioni	196
15.5	Campi attraverso il bordo di un mezzo materiale	198
15.5.1	Un po’ di definizioni e di simboli	198
15.5.2	La componente normale del campo di spostamento elettrico non fa salti	200
15.5.3	La componente normale del campo elettrico può far salti	202
15.5.4	La componente tangenziale del campo elettrico non fa salti	205
15.5.5	La componente tangenziale del campo di spostamento elettrico può far salti	208
15.6	Equazione del flusso del campo di spostamento elettrico e salti del campo	209
15.6.1	Oltre i criteri di precauzione	210
15.6.2	Condensatore con materiale nello spazio tra le facce	214

| 16 | Epilogo provvisorio | 219 |
24 Effetti magnetici con correnti rettilinee

24.1 Soluzione delle equazioni del campo di induzione magnetica ... 279
24.1.1 Uso dei criteri di invarianza ... 280
24.1.2 È ovunque nullo il componente radiale del campo di induzione magnetica 284
24.1.3 Anche il componente assiale del campo di induzione magnetica è ovunque nullo 286
24.1.4 Il componente trasversale del campo di induzione magnetica .. 288
24.2 L’invarianza per riflessione ... 290
24.2.1 Non tutto si riflette allo stesso modo .. 292
24.2.2 Riflessioni e inversione ... 292
24.2.3 Quantità vettoriali che si riflettono allo stesso modo .. 295
24.2.4 Come si riflette il campo di induzione magnetica .. 296
24.2.5 Vettori assiali e vettori polari ... 299
24.2.6 Il ruolo dell’inversione ... 300
24.2.7 Riflessione di vettori polari o di vettori assiali ... 304
24.2.8 Uso dei criteri di invarianza con la riflessione .. 306
24.3 Forze tra fili rettilinei percorsi da corrente ... 310
24.3.1 Direzioni e versi .. 310
24.3.2 Campo di induzione magnetica e forza agente tra i fili ... 311
24.3.3 La forza agente tra i fili e le esperienze di Ampère ... 312

25 Soluzioni delle equazioni del campo di induzione magnetica

25.1 Campo di induzione magnetica dovuto a corrente su una superficie cilindrica 317
25.1.1 Criteri di invarianza per la corrente su una superficie cilindrica ... 319
25.1.2 I componenti del campo di induzione magnetica ... 322
25.2 Le equazioni del campo di induzione magnetica sono lineari .. 327
25.3 Il solenoide .. 329
25.3.1 Il campo di induzione magnetica generato da un solenoide ... 331
25.4 Campo di induzione magnetica dovuto a corrente su un piano .. 336
25.4.1 Calcolo del campo di induzione magnetica ... 337
25.5 Campo di induzione magnetica e campo elettrico con sorgenti di forma simile 342
25.5.1 Le equazioni dei campi e le loro soluzioni .. 344
25.6 Campo di induzione magnetica generato da un dipolo magnetico .. 345
25.6.1 Il campo dovuto a un breve tratto rettilineo di corrente ... 346
25.6.2 Calcolo di una somma abbastanza complicata .. 349
25.6.3 Calcolo del campo di induzione magnetica generato da un dipolo magnetico 353
25.6.4 I campi generati da un dipolo magnetico e da un dipolo elettrico .. 360
26 Secondo intermezzo sulle unità di misura 361
 26.1 Unità di misura della corrente 362
 26.1.1 Quanto vale la permeabilità magnetica del vuoto? 363
 26.2 Unità di misura della carica 364
 26.2.1 Quanto vale la permittività elettrica del vuoto? 364
 26.3 Unità di misura per grandezze elettriche 365
 26.3.1 Unità di misura del potenziale 366
 26.3.2 Unità di misura del campo elettrico 366
 26.3.3 Unità di misura di resistenza e capacità 367
 26.3.4 Unità di misura del campo di polarizzazione e del campo di spostamento elettrico 367
 26.4 Unità di misura per grandezze magnetiche 368
 26.4.1 Unità di misura del campo di induzione magnetica 368
 26.4.2 Unità di misura del flusso del campo di induzione magnetica 369
 26.4.3 Unità di misura del campo B/μ_0 370
 26.4.4 Unità di misura del rapporto tra il flusso del campo di induzione magnetica e la corrente 370

27 Fenomeni magnetici nei mezzi materiali 371
 27.1 Correnti microscopiche .. 372
 27.1.1 Un elettrone nella sua orbita 372
 27.1.2 Dipoli magnetici microscopici 374
 27.1.3 La meccanica di Newton vale ancora per gli elettroni legati? .. 375
 27.2 All’origine delle proprietà magnetiche della materia 376
 27.2.1 Momento di dipolo magnetico orbitale e di spin 377
 27.3 Campo di magnetizzazione .. 378
 27.4 Proprietà magnetiche dei materiali 380
 27.4.1 Materiali paramagnetici 380
 27.4.2 Diamagnetismo .. 382
 27.4.3 Materiali in un campo di induzione magnetica e materiali in un campo elettrico 388
 27.5 Materiali ferromagnetici ... 389
 27.5.1 Magneti permanenti ... 389
 27.5.2 Magneti quanto permanenti? 391
 27.5.3 Ma il ferro è davvero ferromagnetico? 392
 27.6 Attrazione — e repulsione — tra magneti 394

28 Equazioni del campo nei mezzi materiali 401
 28.1 Correnti microscopiche .. 401
 28.1.1 Corrente microscopica media 403
 28.1.2 Correnti microscopiche medie che determinano il campo di induzione magnetica 404
 28.2 Il campo magnetico .. 408
 28.2.1 Campo magnetico, campo elettrico 409
INDICE

28.3 Attraverso il bordo di un mezzo materiale .. 410
 28.3.1 Componenti dei campi ... 410
 28.3.2 La componente normale del campo di induzione magnetica non fa
 salti ... 412
 28.3.3 Invece la componente normale del campo magnetico può fare salti 413
 28.3.4 La componente tangenziale del campo magnetico non fa salti 414
 28.3.5 La componente tangenziale del campo di induzione magnetica può
 fare salti ... 417
 28.3.6 Conclusioni e avvertenze ... 418
 28.4 Come dipende la magnetizzazione dal campo di induzione magnetica e
 dal campo magnetico? ... 421
 28.4.1 Magnetizzazione e campo di induzione magnetica in materiali dia-
 magnetici o paramagnetici .. 421
 28.4.2 Anche il campo di induzione magnetica e il campo magnetico sono
 proporzionali .. 422
 28.4.3 La suscettività magnetica ... 423
 28.4.4 Magnetizzazione, campo di induzione magnetica e campo magneto-
 tico in materiali ferromagnetici 425
 28.4.5 Solenoidi riempiti di materiale magnetizzabile 428

29 Un altro epilogo provvisorio .. 433

Campi riunificati: elettromagnetismo .. 435

30 Punto di arrivo, punto di partenza .. 437

31 Da dove nascono le forze? ... 441
 31.1 All’origine microscopica delle forze ... 441
 31.2 Forze macroscopiche ... 442
 31.2.1 La forza peso ... 442
 31.2.2 I legami ... 443
 31.2.3 E i magneti? ... 445
 31.2.4 Un ordine tra le interazioni ... 445
 31.3 Forze nei nuclei ... 447
 31.3.1 L’interazione forte .. 447
 31.3.2 L’interazione debole .. 448
 31.4 Perché tante interazioni fondamentali? 449

32 Il tempo e la circuitazione del campo di induzione magnetica 451
 32.1 Quando un condensatore si scarica .. 451
 32.1.1 Collegare le facce del condensatore 453
 32.1.2 Il condensatore durante la scarica 456
 32.1.3 Quanto dura la scarica? ... 459
32.1.4 Altre quantità che variano ... 461
32.2 Circuitazione del campo di induzione magnetica e condensatore che si
scarica ... 464
 32.2.1 La catastrofe della circuitazione del campo di induzione magneti-
ca ... 464
 32.2.2 Come rimediare alla catastrofe della circuitazione del campo di
induzione magnetica ... 467
32.3 La nuova legge della circuitazione del campo di induzione magnetica . . 469
 32.3.1 Un dubbio da chiarire e la legge del flusso del campo elettrico . . 470
 32.3.2 Una novità importante .. 474
33 Il tempo e la circuitazione del campo elettrico 477
 33.1 Un risultato poco chiaro .. 477
 33.1.1 Ma cosa fa aumentare l’energia? 479
 33.2 La nuova legge della circuitazione del campo elettrico 481
 33.2.1 Durante la variazione del campo di induzione magnetica 481
 33.2.2 Un campo elettrico che aggiusta tutto 484
 33.2.3 La nuova legge della circuitazione del campo elettrico e la legge
del flusso del campo di induzione magnetica 487
 33.2.4 Altre novità .. 489
34 Le equazioni di Maxwell .. 491
 34.1 Le equazioni del campo elettromagnetico 491
 34.1.1 Che tipo di campo è il campo elettromagnetico? 492
 34.1.2 Qualche indizio rivelatore ... 492
 34.2 Prima di risolvere le equazioni di Maxwell 494
 34.2.1 Campi, sorgenti, curve e superfici 494
 34.2.2 Quanto è lungo l’intervallo di tempo ∆t? 495
 34.2.3 Le equazioni di Maxwell sono lineari 497
35 Una soluzione delle equazioni di Maxwell 503
 35.1 Quando il campo elettrico varia lentamente 503
 35.2 Solenoide con corrente che varia nel tempo 504
 35.3 Il campo di induzione magnetica quando la corrente non varia veloce-
mente ... 508
 35.4 Il campo elettrico quando la corrente non varia velocemente 509
 35.4.1 Il campo elettrico dovuto alla corrente trasversale 510
 35.4.2 Il campo elettrico dovuto alla corrente assiale 520
 35.4.3 Il componente assiale del campo \(\mathbf{E}_0(r, t) \) 524
 35.4.4 Problemi ... 530
 35.4.5 Dove si chiude la corrente del solenoide? 531
 35.4.6 Può fare salti il campo elettrico dovuto alla corrente assiale? 534
 35.5 Come il campo del solenoide varia nel tempo 537
 35.5.1 Campi e correnti .. 538
<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Titolo</th>
<th>Pagine</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.5.2</td>
<td>Il campo elettrico varia abbastanza lentamente?</td>
<td>543</td>
</tr>
<tr>
<td>35.6</td>
<td>Se ci sono altre sorgenti</td>
<td>544</td>
</tr>
<tr>
<td>36</td>
<td>Forza, lavoro, potenziale</td>
<td>547</td>
</tr>
<tr>
<td>36.1</td>
<td>Non c'è più il potenziale del campo elettrico</td>
<td>548</td>
</tr>
<tr>
<td>36.1.1</td>
<td>Il lavoro della forza dovuta al campo elettrico</td>
<td>550</td>
</tr>
<tr>
<td>36.1.2</td>
<td>Quando si può ancora definire il potenziale?</td>
<td>553</td>
</tr>
<tr>
<td>36.2</td>
<td>Potenziali del campo elettromagnetico</td>
<td>554</td>
</tr>
<tr>
<td>36.2.1</td>
<td>Un numero per ogni curva chiusa</td>
<td>554</td>
</tr>
<tr>
<td>36.2.2</td>
<td>Un campo vettoriale ausiliario</td>
<td>555</td>
</tr>
<tr>
<td>36.2.3</td>
<td>Un campo con circuitazione nulla</td>
<td>557</td>
</tr>
<tr>
<td>36.2.4</td>
<td>Potenziale scalare, potenziale vettore</td>
<td>558</td>
</tr>
<tr>
<td>37</td>
<td>La forza elettromotrice</td>
<td>561</td>
</tr>
<tr>
<td>37.1</td>
<td>Le esperienze di Faraday</td>
<td>561</td>
</tr>
<tr>
<td>37.2</td>
<td>Corrente indotta</td>
<td>563</td>
</tr>
<tr>
<td>37.2.1</td>
<td>Un circuito semplice</td>
<td>563</td>
</tr>
<tr>
<td>37.2.2</td>
<td>Perplessità</td>
<td>568</td>
</tr>
<tr>
<td>37.2.3</td>
<td>Campo elettrico interno al conduttore</td>
<td>571</td>
</tr>
<tr>
<td>37.3</td>
<td>Campo elettrico e densità di corrente</td>
<td>574</td>
</tr>
<tr>
<td>37.4</td>
<td>Corrente indotta in un circuito qualunque</td>
<td>575</td>
</tr>
<tr>
<td>37.4.1</td>
<td>Forza elettromotrice indotta</td>
<td>579</td>
</tr>
<tr>
<td>37.5</td>
<td>Il segno nella legge dell'induzione</td>
<td>580</td>
</tr>
<tr>
<td>37.5.1</td>
<td>Un principio generale</td>
<td>582</td>
</tr>
<tr>
<td>38</td>
<td>Autoinduzione</td>
<td>585</td>
</tr>
<tr>
<td>38.1</td>
<td>Induttanza</td>
<td>585</td>
</tr>
<tr>
<td>38.1.1</td>
<td>Cosa determina l'induttanza di un circuito</td>
<td>586</td>
</tr>
<tr>
<td>38.1.2</td>
<td>L'induttanza di una bobina</td>
<td>587</td>
</tr>
<tr>
<td>38.2</td>
<td>Interruttori</td>
<td>589</td>
</tr>
<tr>
<td>38.2.1</td>
<td>Corrente dopo la chiusura dell'interruttore</td>
<td>590</td>
</tr>
<tr>
<td>38.2.2</td>
<td>E quando si apre l'interruttore?</td>
<td>595</td>
</tr>
<tr>
<td>39</td>
<td>Flusso concatenato, flusso tagliato</td>
<td>599</td>
</tr>
<tr>
<td>39.1</td>
<td>Circuits in movement con il campo di induzione magnetica costante</td>
<td>600</td>
</tr>
<tr>
<td>39.1.1</td>
<td>Nomenclature</td>
<td>601</td>
</tr>
<tr>
<td>39.1.2</td>
<td>Cos'è il flusso del campo di induzione magnetica tagliato?</td>
<td>602</td>
</tr>
<tr>
<td>39.1.3</td>
<td>Calcolo del flusso del campo di induzione magnetica tagliato</td>
<td>604</td>
</tr>
<tr>
<td>39.2</td>
<td>Forza elettromotrice nel circuito in movimento</td>
<td>610</td>
</tr>
<tr>
<td>39.2.1</td>
<td>Forza sui portatori di carica in un circuito in movimento</td>
<td>610</td>
</tr>
<tr>
<td>39.2.2</td>
<td>Nel circuito in movimento si genera una corrente</td>
<td>613</td>
</tr>
<tr>
<td>39.2.3</td>
<td>Anche nel circuito in movimento c'è forza elettromotrice</td>
<td>614</td>
</tr>
<tr>
<td>39.3</td>
<td>Circuits in movement quando anche il campo di induzione magnetica varia</td>
<td>615</td>
</tr>
</tbody>
</table>
39.4 Una conclusione, una osservazione e un dubbio .. 617
39.5 Una applicazione ferroviaria ... 619

40 Corrente alternata .. 623
 40.1 Circuito ruotante .. 623
 40.1.1 Forza elettromotrice nel circuito ruotante .. 625
 40.2 Campo ruotante .. 627
 40.3 E la corrente? ... 628
 40.4 Tensione alternata ... 632
 40.4.1 Caratteristiche della tensione alternata .. 633
 40.4.2 Questioni di fase ... 636
 40.5 Circuiti in corrente alternata ... 639
 40.5.1 Circuito con resistenze soltanto ... 640
 40.5.2 Circuito con resistenza e induttanza .. 641
 40.5.3 E se manca l’induttanza, oppure la resistenza? 645
 40.5.4 Circuito con resistenza, induttanza e capacità 646
 40.5.5 Pulsazione di risonanza .. 652
 40.5.6 Circuito con la sola capacità ... 654
 40.6 Valori efficaci ... 655
 40.6.1 Serve la media su un periodo? .. 656
 40.6.2 Una quantità efficace ... 657
 40.6.3 Tensione efficace, corrente efficace .. 659
 40.7 Un’osservazione di principio ... 660

41 Energia del campo elettromagnetico ... 663
 41.1 Come determinare la densità di energia del campo 664
 41.2 Lavoro delle forze dovute al campo elettromagnetico 664
 41.2.1 Un’altra espressione della densità di corrente 667
 41.2.2 Un’altra espressione per il lavoro ... 672
 41.2.3 Ancora un’altra espressione per il lavoro 674
 41.2.4 Il contributo inatteso ... 678
 41.3 Dove va l’energia del campo elettromagnetico? 684
 41.3.1 La densità di energia .. 685
 41.3.2 Il campo $\mathbf{S}(r, t)$.. 685
 41.4 Una porzione di spazio qualsiasi .. 687
 41.5 Energia in due dispositivi semplici .. 690
 41.5.1 Energia in un condensatore .. 690
 41.5.2 Energia in una bobina ... 691

42 Campo elettromagnetico nel vuoto .. 693
 42.1 Il vuoto ... 693
 42.1.1 Le equazioni del campo elettromagnetico nel vuoto 694
 42.2 Un campo che varia nel tempo .. 698
42.2.1 Campo elettrico e campo di induzione magnetica uniformi su ogni piano parallelo ... 698
42.2.2 Le equazioni del flusso del campo elettrico e del campo di induzione magnetica .. 701
42.2.3 Curve chiuse e quadratini ... 704
42.2.4 Le equazioni della circuitazione del campo elettrico e del campo di induzione magnetica 707
42.3 Velocità del campo elettromagnetico .. 715

43 Onde e luce.. 719
43.1 Onde elettromagnetiche ... 719
 43.1.1 Un vincolo per il campo elettromagnetico che “viaggia” 720
 43.1.2 Il nome per il campo che “viaggia” 725
43.2 Onde piane monocromatiche .. 727
 43.2.1 Cosa distingue un’onda piana monocromatica 728
 43.2.2 Legame tra campo elettrico e campo di induzione magnetica in un’onda monocromatica 731
 43.2.3 Senza il sistema di assi cartesiani 735
 43.2.4 Energia di un’onda piana monocromatica 737
 43.2.5 Il flusso d’energia dovuto a un’onda piana monocromatica 739
43.3 Miscugli di onde piane monocromatiche 742
43.4 Luce .. 745
 43.4.1 La velocità della luce ... 746
 43.4.2 Colori .. 747
43.5 Al di qua e al di là della luce visibile .. 748
 43.5.1 Come si producono le onde e come si rivelano 750

44 Campo elettromagnetico nei materiali .. 753
44.1 Polarizzazione, magnetizzazione .. 753
 44.1.1 Tempi dei materiali, tempi dei campi 754
 44.1.2 La “risposta” del mezzo materiale ... 758
44.2 Le equazioni di Maxwell in presenza di mezzi materiali 759
 44.2.1 Le equazioni di Maxwell dove non compaiono sorgenti 760
 44.2.2 L’equazione del flusso del campo elettrico 760
 44.2.3 L’equazione della circuitazione del campo di induzione magnetica . 762
 44.2.4 Densità di corrente microscopica e magnetizzazione 763
 44.2.5 Densità di corrente microscopica e polarizzazione 763
 44.2.6 Cosa diventa l’equazione della circuitazione del campo di induzione magnetica .. 768
 44.2.7 Le equazioni di Maxwell nei mezzi materiali espresse con le sole sorgenti macroscopiche .. 769
44.3 Al bordo tra mezzi materiali differenti .. 772
 44.3.1 Campi con componenti normali che non fanno salti e campi con componenti normali che li fanno 773
INDICE

44.3.2 Per quali campi le componenti tangenziali non fanno salti? 775
44.3.3 Componenti tangenziali che fanno salti 779
44.4 Onde elettromagnetiche nei mezzi materiali 780
44.4.1 Onde in un mezzo omogeneo . 780
44.4.2 Frequenza o lunghezza d’onda? . 782
44.5 Rifrazione . 785
44.5.1 Rifrazione di un’onda elettromagnetica piana 786
44.5.2 Indice di rifrazione e frequenza dell’onda 789
44.5.3 Quando un mezzo non è trasparente 792
45 Epilogo? 795
45.1 Leggere il libro della natura . 795
45.1.1 La misteriosa efficacia della matematica 796
45.1.2 Falsificazione e riunificazione . 797
45.2 E poi? . 798

Cosa sapere già 801

46 Simboli e significati 803
46.1 Funzione . 803
46.2 Elenchi e sommatorie . 807
46.2.1 Funzioni con dominio composto di numeri interi 807
46.2.2 Sommatoria . 808
46.3 Alcune funzioni reali di variabile reale 809
46.3.1 Numeri reali . 809
46.3.2 La funzione esponenziale e la funzione logaritmo 811
46.3.3 Le funzioni seno e coseno . 817
46.4 Normale ortogonale perpendicolare . 828
46.5 Dimensioni . 828
46.5.1 Misura e unità di misura . 829
46.5.2 Grandezze fondamentali e grandezze derivate 830
46.5.3 Cosa sono le dimensioni di una grandezza 832
46.5.4 Cambiare unità di misura . 832

47 Calcolo con i vettori 837
47.1 Perché i vettori . 837
47.2 Cos’è un vettore . 838
47.2.1 Modulo . 842
47.2.2 Versorí . 843
47.3 Le operazioni fondamentali con i vettori 843
47.3.1 Prodotto di un vettore per un numero reale 844
47.3.2 Addizione di due vettori . 847
47.4 Comporre e scomporre vettori . 851
INDICE

47.4.1 Una retta nello spazio .. 851
47.4.2 Un piano nello spazio .. 852
47.4.3 Un punto nello spazio .. 857
47.4.4 Scomporre un vettore ... 858
47.5 Prodotti di vettori ... 860
 47.5.1 Il prodotto scalare .. 860
 47.5.2 Il prodotto vettoriale 865

Indice analitico ... 871